
See Applications Run and Throughput Jump: The Case for Redundant
Computing in HPC

Rolf Riesen
Sandia National Laboratories∗

rolf@sandia.gov

Kurt Ferreira
Sandia National Laboratories
kbferre@sandia.gov

Jon Stearley
Sandia National Laboratories
jrstear@sandia.gov

Abstract

For future parallel computing systems with as few as
twenty-thousand nodes we propose redundant computing to
reduce the number of application interrupts. The frequency
of faults in exascale systems will be so high that traditional
checkpoint/restart methods will break down. Applications
will experience interruptions so often that they will spend
more time restarting and recovering lost work, than comput-
ing the solution. We show that redundant computation at
large scale can be cost effective and allows applications to
complete their work in significantly less wall-clock time. On
truly large systems, redundant computing can increase sys-
tem throughput by an order of magnitude.

1. Introduction

The average number of processor cores per system on
the top500 list is approaching ten thousand with the largest
systems exceeding one hundred thousand cores [8]. Even
though more and more of these cores are gathered on sin-
gle integrated circuits, the overall component count of these
enormous systems keeps increasing. With more cores,
whether on a single chip or not, more memory and more
supporting components are required. With an increased com-
ponent count, the number of faults a system experiences in-
creases as well.

Most large-scale parallel applications rely on check-
point/restart techniques to recover from faults. Each fault in
a component that the application is currently using, causes
an application interrupt and the application aborts. Later,
the application has to restart and resume from the last suc-
cessful checkpoint. Several studies have shown that this ap-
proach, independent of the specific checkpoint method, does
not scale beyond a few tens of thousands of nodes [9, 2].

∗Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department ofEnergy
under contract DE-AC04-94AL85000.

This leads to a problem for users of extreme-scale sys-
tems: Their applications will spend most of their execution
time storing checkpoints, performing restarts, and recomput-
ing work that has been lost. For large-scale scientific appli-
cations the additional parallelism available in these systems
becomes a hindrance instead of a performance boost. This is
an inefficient use of resources and may force applications to
use fewer nodes than are available, thereby getting less work
done, or taking longer to reach a solution.

The number of interrupts an application experiences is de-
pendent on the Mean Time Between Failures (MTBF). An
MTBF of four or five years for each node in a system seems
to be the norm [12]. Applications are vulnerable not only
to hardware failures, but also to software errors and environ-
mental causes such as power outages and shutdowns due to
things as mundane as the failure of a cooling fan or a clogged
filter. Any such failure leads to an application interrupt and
a subsequent restart.

Given a node MTBFΘnode and the assumption that all
nodes have the same MTBF, it is easy to compute the MTBF
Θsys for an entire system consisting ofn nodes [5]:

Θsys =
1

1
Θ1

+ 1
Θ2

+ . . . + 1
Θn

=
1

n 1
Θ

=
Θnode

n
(1)

With a node MTBF of five years and a node count of one
hundred thousand, the system MTBF is just over 25 min-
utes. An application spanning the entire system can expect
to restart two or more times per hour. This outlook becomes
even worse with larger systems and when the somewhat op-
timistic node MTBF of five years in our example is adjusted
down. In addition, the time to write a checkpoint and to
restart increases with the application size. Values of tensof
minutes are not uncommon at the peta or exascale. There-
fore, such applications spend a significant portion of their
time not doing the computations they were designed for.

That checkpoint/restart is no longer a solution for gi-
gantic systems has been recognized [2, 10] and several re-
search groups are working on the problem of reducing the

frequency or overhead of checkpointing: [4, 9]. Our sug-
gestion for making these huge systems practical is to use
redundant computing. This approach has a long history in
mission-critical systems and the time has come to apply it to
large-scale High-Performance Computing (HPC) systems.

A side effect of redundant computing is that result veri-
fication can be done at no additional cost. The number of
cores per socket keeps increasing and main memory capac-
ity is also growing. In some main memories, error correcting
codes are employed. However, CPU registers, caches, and
the buses between these building blocks are largely unpro-
tected and may introduce silent errors. Redundant comput-
ing can detect these errors and abort an application when an
error occurs. With triple redundancy, error correction be-
comes an option.

In Section 2 we propose how redundant computing can be
employed in HPC systems and why it reduces the number of
interrupts an application experiences as the node count goes
up. We analyze the payoff in Section 3 by comparing the
modeled wall-clock time of an application with and without
redundant nodes. We draw our conclusions in Section 4.

2. Redundant Computing

Redundant computation increases an application’s re-
silience to faults by increasing the time between application
interruptions; i.e., it increases the application Mean Time Be-
tween Interrupts (MTBI)Θapp. In redundant computation
each process is replicated a number of times throughout the
system. Individual components and nodes will fail, but an
application will continue without interruption, providedthat,
in a bundle of replicated processes, at least one of them is
still functioning.

The potential benefits of redundant computation can be
illustrated using a generalization of a common problem in
probability theory called the birthday problem [7]. The birth-
day problem is concerned with the expected number of peo-
ple needed to find two with the same month and day of birth.
The birthday problem result is used in the analysis of many
problems, including collisions and chaining in hashes [6].

We generalize the results of this problem to describe the
impact of redundant computing on application fault tolerance
and the increase in MTBI of our redundant system. If we
consider each of the replicated bundles of nodes to be a bin
with a capacity equal to the number of replicas, then asking
how many faults this new system can handle without inter-
ruption is equivalent to asking what is the expected number
of throws of random balls until one bin has been filled to
capacity. In the case of two replica per process, the birth-
day problem tells us that the expected number of throws is
O(

√
n) (wheren is the number bins or unique processes).

More precisely, the average number of faultsF our redun-
dant system of sizen can absorb, assuming double redun-

dancy, is [6, 3]:

F (n) = 1 +
n
∑

k=1

n!

(n − k)! · nk
(2)

Figure 1 shows a plot of Equation 2 as a function of the
number of nodes. From this figure we see the well known
result for the birthday problem forn = 365 (around24.16
people). We also see that adding redundant nodes to our sys-
tem dramatically increases its ability to absorb faults, thereby
increasing the effective MTBI of the application. For exam-
ple, forn = 200, 000 nodes, on average, we can sustain561
faults before our application will be interrupted. Therefore,
the MTBI will increase by a factor of561 in the redundant
case over the non-redundant case.

While the analysis above outlines the benefits of redun-
dant computation, it does not indicate the performance over-
head of such a mechanism. Performance overhead includes
keeping the replica state consistent as the application pro-
gresses. To evaluate the overhead of the replica consistency
we built a prototype library that handles the replica coor-
dination protocol. This library is implemented at the MPI
profiling layer and intercepts all MPI calls from the applica-
tion. The simple protocol used by this library converts all
messages between a source and a destination to message ex-
changes between: 1) the source and destination, and 2) be-
tween the redundant partners of the source and destination,
assuming they exist.

Since the consistency protocol doubles message traffic
in the system, point-to-point micro benchmark performance
suffers. For higher level benchmarks and applications the
impact is, in general, minimal. Figure 2 shows the over-
head of the consistency protocol for HPCCG. The HPCCG
mini-application, part of the Mantevo project [11], is a sim-
ple sparse conjugate gradient solver designed to capture an
important component of Sandia National Laboratories pro-
duction workload. The majority of its runtime is spent per-
forming sparse matrix-vector multiplies, where the sparse
matrix is encoded in compressed row storage format. The
interprocessor communication consists of nearest neighbor
boundary information, in addition to globalMPI Allreduce

operations required for the scalar computations in the CG al-
gorithm. As the figure shows, the performance impact of the
protocol on HPCCG when using redundant nodes is minimal.
For applications where the additional bandwidth is an issue,
alternative consistency protocols are being investigated.

3. Discussion

Initial reactions to applying redundancy to HPC systems
often concern cost. This includes the cost of acquiring twice
as many compute nodes and supplying twice as much power
and cooling to the system. Another cost of concern is the

2

N
od

e
F

ai
lu

re
s

un
til

 A
pp

lic
at

io
n

In
te

rr
up

t

Number of Nodes

 100

 200

 300

 400

 500

 600

 700

 800

 900

10 20 50 100
200

500
1,000

2,000
5,000

10,000

20,000

50,000

100,000

200,000

500,000

24.16

365

Figure 1. Expected number of node failures before an application interrupt in a system with redun-
dant nodes. Numbers are calculated using the birthday problem Equation 2.

E
xe

cu
tio

n
T

im
e

D
iff

er
en

ce
 to

 N
at

iv
e

Nodes

Redundant
Native

Redundant %

0.0 s

5.0 s

10.0 s

15.0 s

20.0 s

25.0 s

30.0 s

35.0 s

4 8 16 32 64 128
256

512
1,024

0 %

20 %

40 %

60 %

80 %

100 %

Figure 2. Performance and overhead of HPCCG application. The number of nodes on the x-axis is
from the applications’ perspective. Twice that many nodes are used to provide full redundancy.

3

software performance overhead associated with enabling re-
dundant computing. Finally, but not least, is the notion that
purchasing the largest and most expensive computer in the
world should not carry the stigma of getting at most half of
the peak performance of such a system.

Acquisition and power costs must be weighed against the
time for an application to reach a solution. If, due to ap-
plication interrupts, a solution takes 200 hours to compute,
but the same solution can be attained in 25 hours by using
redundant computing, then the extra cost becomes negligi-
ble. The throughput of this example improves by a factor of
eight; dwarfing the doubling in cost.

John Daly has proposed Equation 3 to calculate the exe-
cution time of an application [1]. WhereTw(τ) is the total
wall-clock time when using the checkpoint intervalτ . Θ is
the MTBF for the application andTs is the solve time; i.e,
the amount of time required to complete the assigned work.
δ is the time it takes to write a checkpoint, andR is the time
to restart after an application interrupt.

Tw(τ) = Θapp · e
R

Θapp

(

e
τ+δ

Θapp − 1
)

Ts

τ
for δ << Ts

(3)
We can use Equation 3 to calculate how long an applica-

tion will need to execute to solve a problem. We can per-
form this calculation for an increasing number of nodes and
then compare it to the case where we use redundant nodes.
Figure 3 shows the result of one such calculation. For this
figure we assumed a perfectly weak-scaling application that
requiresTs = 168 hours to complete its work. We chose a
fixed checkpoint timeδ = 5 minutes and fixed the time to
restart atR = 10 minutes.

For each node size we calculated the optimal checkpoint
interval τ according to Equation 38 in [1]. The checkpoint
intervalτ is dependent on the MTBIΘapp of the application.
For a given number of nodes we used Equation 1 to calculate
the system MTBF based on a node MTBF of five years. We
useTw(τ, n) to mean the wall-clock time of an application
when run onn nodes. The dark green line in Figure 3 shows
that the amount of time required to complete the application
increases exponentially with the number of nodes used.

We then repeated these calculations for the case with re-
dundant nodes. For a given number of nodes we used the
same checkpoint intervalτ as for the non-redundant case.
That is not entirely correct, since Daly’s calculation of the
optimal checkpoint interval may not be suitable for a redun-
dant system. Since redundancy improves the MTBI of an ap-
plication, ourτ should probably be higher. Using the sameτ

as for the non-redundant case gives us a worst case scenario
because we may be checkpointing too frequently.

We useTwr(τ, n) to mean the wall-clock time of an ap-
plication when run on2n nodes (n nodes plusn redundant
nodes). To computeTwr(τ, n) we need the MTBF of an ap-

plication running on a system with redundant nodes. The
birthday problem, Equation 2, gives us the ratio of faults
to interrupts in a system withn nodes. When we multiply
that ratio with the system MTBF of a non-redundant system
(Equation 1), we can calculate the application MTBF:

Θapp = Θsys · F (n) =
Θnode

n

(

1 +

n
∑

k=1

n!

(n − k)! · nk

)

(4)
Using the values from Equation 4 in Equation 3 lets us

calculate the wall-clock execution time for an applicationon
a system with redundant nodes. The light green line in Fig-
ure 3 showsTwr(τ, n) as a function of the number of nodes.
Running on larger number of nodes still introduces overhead
due to the increased number of faults in the system. How-
ever, it is substantially less than the case without redundant
computation. The brown curve in Figure 3 is the percent-
age of the wall-clock time with redundant computation of
the wall-clock time without redundancy:100·Twr(τ,n)

Tw(τ,n) . When
that curve drops below 50%, using twice as many nodes for
redundant computing may pay off. For the example shown
in Figure 3, that happens for 100,000 nodes and more. Dif-
ferent values for parameters such as the node MTBF and the
checkpoint timeδ, the number of nodes needed before re-
dundant computing becomes reasonable, is much lower.

Figure 3 shows that the benefit of redundant computation
does not come into play until we reach a large number of
nodes. The exact number depends on the node MTBFΘnode,
the time to write a checkpointδ, and the time to restartR. We
used fixed values for the latter two, but in a real system they
are likely to increase with the number of nodes being used.
For the redundant case it seems that we should be able to
increase the checkpoint intervalτ and further improve those
results. Note that the overhead of the redundancy protocol
is not included in Figure 3. Beyond five-hundred-thousand
nodes, for which we do not have performance measurements,
it is likely to have some impact. Nevertheless, current mea-
surements indicate that it will be minimal when compared to
the benefits of redundant computing.

In Section 2 we mentioned that there is significant over-
head for point-to-point micro benchmarks, and have shown
that the HPCCG application kernel suffers very little from
the redundancy protocol overhead. Therefore the main cost
of redundant computing is the doubling in the number of
nodes and the resources, such as power and cooling, that go
along with it. We have shown in this section that this cost is
justified by the faster execution of applications, resulting in
higher throughput of the system.

Note that redundant computing is not a substitute for
checkpoint/restart. It reduces the number of interruptions an
application experiences and therefore reduces the overhead
of checkpointing. Redundant computation also enables the

4

A
pp

lic
at

io
n

W
al

lc
lo

ck
 T

im
e

T
w

(τ
,n

)

T
w

r(
τ,

n)
 a

s
a

P
er

ce
nt

ag
e

of
 T

w
(τ

,n
)

Number of Nodes

Tw(τ,n) No redundant nodes
Twr(τ,n) With redundant nodes

100 * Twr(τ,n) / Tw(τ,n)

100 h

200 h

300 h

400 h

500 h

600 h

700 h

800 h

900 h

1 kh

1,000
2,000

5,000
10,000

20,000

50,000

100,000

200,000

500,000

1,000,000

50 %

0 %

20 %

40 %

60 %

80 %

100 %

Figure 3. Comparing application wall-clock time with and without redundant nodes. When redun-
dant computing consumes less than 50% of the time of a non-redundant run, then the extra cost of
redundant computing may pay off.

detection of silent errors. These are errors that occur in reg-
isters, caches, and data paths that are not protected by error
detection or correction codes. These errors are often silent
because they produce a corrupted result but do not further
disrupt the computation. Most applications assume that cal-
culations done by the hardware are correct and do not or can-
not check for invalid results. Double redundancy lets us flag
silent errors, and triple redundancy would let us correct silent
errors.

4. Conclusions

In this paper we take the position that redundant comput-
ing is a viable solution to the problem of the ever increas-
ing number of application interruptions as massively paral-
lel systems get larger. The problem, applications spending
more time writing checkpoints and restarting rather than per-
forming productive computations, is real and needs to be ad-
dressed. At first glance, redundant computing seems to waste
half of the compute resources in a system. We have shown
that redundant computing actually reduces the time to solu-
tion by such a large factor that not using it is a bigger loss in
system throughput. There is a comparatively small overhead
to pay to enable redundancy in software at the user level, and
it does not completely replace checkpoint/restart since itonly
reduces the number of application interrupts; not eliminating

them.
For future work we are considering improving the con-

sistency protocol used by our library and reduce protocol
overhead. Although the overhead seems to be acceptable for
applications at the few-thousand-node scale, it may become
worse at much larger scale. We are also looking at applying
this idea to non-MPI applications, especially in a multicore
world. Finally, we are looking at approaches where the data
is replicated but the redundant computation is only carried
out when necessary.

References

[1] J. T. Daly. A higher order estimate of the optimum check-
point interval for restart dumps.Future Gener. Comput. Syst.,
22(3):303–312, 2006.

[2] E. Elnozahy and J. Plank. Checkpointing for peta-scale sys-
tems: a look into the future of practical rollback-recovery.
Dependable and Secure Computing, IEEE Transactions on,
1(2):97–108, Apr. 2004.

[3] P. Flajolet, P. J. Grabner, P. Kirschenhofer, and H. Prodinger.
On Ramanujan’sQ-function. J. Comput. Appl. Math.,
58(1):103–116, 1995.

[4] R. Gupta, P. Beckman, B.-H. Park, E. Lusk, P. Hargrove,
A. Geist, D. Panda, A. Lumsdaine, and J. Dongarra. CIFTS:
A coordinated infrastructure for fault-tolerant systems. In

5

ICPP ’09: Proceedings of the 2009 International Confer-
ence on Parallel Processing, pages 237–245, Washington,
DC, USA, 2009. IEEE Computer Society.

[5] D. B. Kececioglu. Reliability Engineering Handbook, vol-
ume 2. DEStech Publications, Inc, May 2002.

[6] D. E. Knuth. The art of computer programming, volume 3:
(2nd ed.) sorting and searching. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1998.

[7] F. H. Mathis. A generalized birthday problem.SIAM Review,
33(2):265–270, June 1991.

[8] H. Meuer, E. Strohmaier, H. Simon, and J. Dongarra. Top 500
supercomputer site.http://www.top500.org/, Nov.
2009.

[9] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, M. R.
Varela, R. Riesen, and P. C. Roth. Modeling the impact of
checkpoints on next-generation systems. In24th IEEE Con-
ference on Mass Storage Systems and Technologies, pages
30–46, Sept. 2007.

[10] A. J. Oliner, R. K. Sahoo, J. E. Moreira, and M. Gupta. Per-
formance implications of periodic checkpointing on large-
scale cluster systems. InProceedings of the 19th IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS’05) - Workshop 18, page 299.2, 2005.

[11] Sandia National Laboratory. Mantevo project home page.
https://software.sandia.gov/mantevo, Nov. 6
2008.

[12] B. Schroeder and G. A. Gibson. A large-scale study of fail-
ures in high-performance computing systems. InProceedings
of the International Conference on Dependable Systems and
Networks (DSN2006), June 2006.

6

